Chapter 2 Design and Biomechanics of the Oxford Knee
DOI: 10.23912/978-1-910158-45-6-4335 | ISBN: 978-1-910158-45-6 |
Published: May 2015 | Component type: chapter |
Published in: Unicompartmental Arthroplasty with the Oxford Knee 2nd edition | Parent DOI: 10.23912/978-1-910158-45-6-1517 |
Abstract
The description of the Oxford Knee starts with an explanation of the function of mobile bearings in knee prostheses. An obvious advantage is that the areas of contact between the joint surfaces are maximised. In this chapter, we shall show that wear at the polyethylene surfaces is thereby minimised and that optimal kinematics can be achieved with minimal risk of loosening. We will discuss the biomechanics of the cementless components and problems that may occur with the tibia.
Sample content
Contributors
- John Goodfellow (Author)
- John O'Connor (Author)
- Hemant Pandit (Author)
- Christopher Dodd (Author)
- David Murray (Author)
Cite as
Goodfellow, O'Connor, Pandit, Dodd & Murray, 2015
Goodfellow, J., O'Connor, J., Pandit, H., Dodd, C. & Murray, D. (2015) "Chapter 2 Design and Biomechanics of the Oxford Knee" In: (ed) . Oxford: Goodfellow Publishers http://dx.doi.org/10.23912/978-1-910158-45-6-4335
References
Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthop Res 2004; 22(3): 625-32.
https://doi.org/10.1016/j.orthres.2003.09.003
Rostoker W, Galante JO. Contact pressure dependence of wear rates of ultra high molecular weight polyethylene. J Biomed Mater Res 1979; 13(6): 957-64.
https://doi.org/10.1002/jbm.820130612
Sathasivam S, Walker PS, Campbell PA, Rayner K. The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements. J Biomed Mater Res 2001; 58(3): 282-90.
https://doi.org/10.1002/1097-4636(2001)58:3<282::AID-JBM1018>3.0.CO;2-S
Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br 1948; 30B(4): 664-70.
https://doi.org/10.1302/0301-620X.30B4.664
Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br 1970; 52(3): 564-7.
https://doi.org/10.1302/0301-620X.52B3.564
Shrive NG, O'Connor JJ, Goodfellow JW. Load-bearing in the knee joint. Clin Orthop Relat Res 1978; (131): 279-87.
https://doi.org/10.1097/00003086-197803000-00046
Borelli GA. De Motu Animalium. Heidelberg: Springer Verlag, 1989; 1680.
Kapandji I. The physiology of the joints. Edinburgh: Churchill Livingstone; 1970.
Thompson WO, Thaete FL, Fu FH, Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991; 19(3): 210-5; discussion 215-6.
https://doi.org/10.1177/036354659101900302
Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br 1999; 81(1): 37-41.
https://doi.org/10.1302/0301-620X.81B1.0810037
Goodfellow J, O'Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br 1978; 60-B(3): 358-69.
https://doi.org/10.1302/0301-620X.60B3.581081
Buechel FF, Pappas MJ. The New Jersey Low-Contact-Stress Knee Replacement System: biomechanical rationale and review of the first 123 cemented cases. Arch Orthop Trauma Surg 1986; 105(4): 197-204.
https://doi.org/10.1007/BF00435480
Schlueter-Brust K, Kugland K, Stein G, Henckel J, Christ H, Eysel P, Bontemps G. Ten year survivorship after cemented and uncemented medial Uniglide ® unicompartmental knee arthroplasties. Knee 2014; 21(5): 964-70.
https://doi.org/10.1016/j.knee.2014.03.009
Argenson JN, O'Connor JJ. Polyethylene wear in meniscal knee replacement. A one to nine-year retrieval analysis of the Oxford knee. J Bone Joint Surg Br 1992; 74(2): 228-32.
https://doi.org/10.1302/0301-620X.74B2.1544958
Psychoyios V, Crawford RW, O'Connor JJ, Murray DW. Wear of congruent meniscal bearings in unicompartmental knee arthroplasty: a retrieval study of 16 specimens. J Bone Joint Surg Br 1998; 80(6): 976-82.
https://doi.org/10.1302/0301-620X.80B6.0800976
Kendrick BJ, Longino D, Pandit H, Svard U, Gill HS, Dodd CA, Murray DW, Price AJ. Polyethylene wear in Oxford unicompartmental knee replacement: a retrieval study of 47 bearings. J Bone Joint Surg Br 2010; 92(3): 367-73.
https://doi.org/10.1302/0301-620X.92B3.22491
Price AJ, Short A, Kellett C, Beard D, Gill H, Pandit H, Dodd CA, Murray DW. Ten-year in vivo wear measurement of a fully congruent mobile bearing unicompartmental knee arthroplasty. J Bone Joint Surg Br 2005; 87(11): 1493-7.
https://doi.org/10.1302/0301-620X.87B11.16325
Kendrick BJ, Kaptein BL, Valstar ER, Gill HS, Jackson WF, Dodd CA, Price AJ, Murray DW. Cemented versus cementless Oxford unicompartmental knee arthroplasty using radiostereometric analysis: A randomised controlled trial. Bone Joint J 2015; 97-B(2): 185-91.
https://doi.org/10.1302/0301-620X.97B2.34331
Kendrick BJ, Simpson DJ, Kaptein BL, Valstar ER, Gill HS, Murray DW, Price AJ. Polyethylene wear of mobile-bearing unicompartmental knee replacement at 20 years. J Bone Joint Surg Br 2011; 93(4): 470-5.
https://doi.org/10.1302/0301-620X.93B4.25605
Murray DW, Goodfellow JW, O'Connor JJ. The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br 1998; 80(6): 983-9.
https://doi.org/10.1302/0301-620X.80B6.0800983
Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S, Dewar ME, Paul JP. A knee simulating machine for performance evaluation of total knee replacements. J Biomech 1997; 30(1): 83-9.
https://doi.org/10.1016/S0021-9290(96)00118-2
Scott R, Schroeder D. Correlation of knee simulator to in-vivo use: evaluating the Oxford Unicompartmental Knee. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society; 2000; Orlando, Florida: Orthopaedic Research Society; 2000. p. 434.
Morra EA, Greenwald AS. Effects of walking gait on ultra-high molecular weight polyethylene damage in unicompartmental knee systems. A finite element study. J Bone Joint Surg Am 2003; 85-A Suppl 4: 111-4.
https://doi.org/10.2106/00004623-200300004-00014
Ashraf T, Newman JH, Desai VV, Beard D, Nevelos JE. Polyethylene wear in a non-congruous unicompartmental knee replacement: a retrieval analysis. Knee 2004; 11(3): 177-81.
https://doi.org/10.1016/j.knee.2004.03.004
Collier MB, Engh CA, Jr., McAuley JP, Engh GA. Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am 2007; 89(6): 1306-14.
https://doi.org/10.2106/00004623-200706000-00020
Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty 2006; 21(4): 580-91.
https://doi.org/10.1016/j.arth.2005.07.009
Oral E, Neils A, Yabannavar P, Muratoglu OK. The effect of an additional phosphite stabilizer on the properties of radiation cross-linked vitamin E blends of UHMWPE. J Orthop Res 2014; 32(6): 757-61.
https://doi.org/10.1002/jor.22597
Price AJ, Svard U. A second decade lifetable survival analysis of the Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res 2011; 469(1): 174-9.
https://doi.org/10.1007/s11999-010-1506-2
Wroblewski BM. Direction and rate of socket wear in Charnley low-friction arthroplasty. J Bone Joint Surg Br 1985; 67(5): 757-61.
https://doi.org/10.1302/0301-620X.67B5.4055876
Plante-Bordeneuve P, Freeman MA. Tibial high-density polyethylene wear in conforming tibiofemoral prostheses. J Bone Joint Surg Br 1993; 75(4): 630-6.
https://doi.org/10.1302/0301-620X.75B4.8331121
Hamelynck KJ, Stiehl JB, Voorhorst PE. Worldwide multicentre outcome study. In: Hamelynck KJ, Stiehl JB, eds. LCS Mobile Bearing Arthoplasty: 25 Years of Worldwide Experience. Berlin: Springer; 2002: 212-24.
https://doi.org/10.1007/978-3-642-59347-5
Keblish PA, Briard JL. Mobile-bearing unicompartmental knee arthroplasty: a 2-center study with an 11-year (mean) follow-up. J Arthroplasty 2004; 19(7 Suppl 2): 87-94.
https://doi.org/10.1016/j.arth.2004.07.009
Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am 1986; 68(7): 1041-51.
https://doi.org/10.2106/00004623-198668070-00010
Marmor L. The Modular (Marmor) knee: case report with a minimum follow-up of 2 years. Clin Orthop Relat Res 1976; (120): 86-94.
https://doi.org/10.1097/00003086-197610000-00014
Pandit H, Hamilton TW, Jenkins C, Mellon SJ, Dodd CA, Murray DW. The clinical outcome of minimally invasive Phase 3 Oxford unicompartmental knee arthroplasty: a 15-year follow-up of 1000 UKAs. Bone Joint J 2015; 97-B(11): 1493-500.
https://doi.org/10.1302/0301-620X.97B11.35634
Kabo JM, Gebhard JS, Loren G, Amstutz HC. In vivo wear of polyethylene acetabular components. J Bone Joint Surg Br 1993; 75(2): 254-8.
https://doi.org/10.1302/0301-620X.75B2.8444946
Hall RM, Siney P, Unsworth A, Wroblewski BM. The association between rates of wear in retrieved acetabular components and the radius of the femoral head. Proc Inst Mech Eng H 1998; 212(5): 321-6.
https://doi.org/10.1243/0954411981534097
Pegg E, Pandit H, Gill HS, Keys GW, Svard UG, O'Connor JJ, Murray DW. Examination of ten fractured Oxford unicompartmental knee bearings. J Bone Joint Surg Br 2011; 93(12): 1610-6.
https://doi.org/10.1302/0301-620X.93B12.27408
Pegg EC, Murray DW, Pandit HG, O'Connor JJ, Gill HS. Fracture of mobile unicompartmental knee bearings: a parametric finite element study. Proc Inst Mech Eng H 2013; 227(11): 1213-23.
https://doi.org/10.1177/0954411913494326
Lim HC, Shon WY, Kim SJ, Bae JH. Oxford phase III meniscal bearing fracture: case report. Knee 2014; 21(1): 340-2.
https://doi.org/10.1016/j.knee.2013.07.012
Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson DT, Agostini S. In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplasty 2002; 17(8): 1049-54.
https://doi.org/10.1054/arth.2002.34527
Price AJ, Rees JL, Beard DJ, Gill RH, Dodd CA, Murray DM. Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis. J Arthroplasty 2004; 19(5): 590-7.
https://doi.org/10.1016/j.arth.2003.12.082
Argenson JN, Blanc G, Aubaniac JM, Parratte S. Modern unicompartmental knee arthroplasty with cement: a concise follow-up, at a mean of twenty years, of a previous report. J Bone Joint Surg Am 2013; 95(10): 905-9.
https://doi.org/10.2106/JBJS.L.00963
Ranawat CS, Meftah M, Windsor EN, Ranawat AS. Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams - affirms. J Bone Joint Surg Br 2012; 94(11 Suppl A): 82-4.
https://doi.org/10.1302/0301-620X.94B11.30826
Simpson DJ, Price AJ, Gulati A, Murray DW, Gill HS. Elevated proximal tibial strains following unicompartmental knee replacement--a possible cause of pain. Med Eng Phys 2009; 31(7): 752-7.
https://doi.org/10.1016/j.medengphy.2009.02.004
Pegg EC, Walter J, Mellon SJ, Pandit HG, Murray DW, D'Lima DD, Fregly BJ, Gill HS. Evaluation of factors affecting tibial bone strain after unicompartmental knee replacement. J Orthop Res 2013; 31(5): 821-8.
https://doi.org/10.1002/jor.22283
Seeger JB, Haas D, Jager S, Rohner E, Tohtz S, Clarius M. Extended sagittal saw cut significantly reduces fracture load in cementless unicompartmental knee arthroplasty compared to cemented tibia plateaus: an experimental cadaver study. Knee Surg Sports Traumatol Arthrosc 2012; 20(6): 1087-91.
https://doi.org/10.1007/s00167-011-1698-3