Chapter 3 Mobility and Stability of the Intact and Replaced Knee
DOI: 10.23912/978-1-910158-45-6-4344 | ISBN: 978-1-910158-45-6 |
Published: May 2015 | Component type: chapter |
Published in: Unicompartmental Arthroplasty with the Oxford Knee 2nd edition | Parent DOI: 10.23912/978-1-910158-45-6-1517 |
Abstract
Having demonstrated in Chapter 2 that a fully conforming mobile bearing can minimise polyethylene wear, in this chapter we show that a mobile bearing prosthesis, unconstrained in the sagittal plane, can restore natural mobility and stability. For surgeon readers who are less interested in the theoretical background, it might be advisable to go straight to Chapter 4, Indications, or to start by reading the final section of this chapter, The Loaded Prosthetic Knee. If that proves interesting, the surgeon might attempt The Unloaded Prosthetic Knee. For the more research minded surgeon or engineer, it seems more logical to start with the Unloaded Natural Knee (the longest section of the chapter) and to read from there. The chapter may also be of interest to those surgeons embarking on the use of a bi-cruciate retaining total knee replacement.
Sample content
Contributors
- John Goodfellow (Author)
- John O'Connor (Author)
- Hemant Pandit (Author)
- Christopher Dodd (Author)
- David Murray (Author)
Cite as
Goodfellow, O'Connor, Pandit, Dodd & Murray, 2015
Goodfellow, J., O'Connor, J., Pandit, H., Dodd, C. & Murray, D. (2015) "Chapter 3 Mobility and Stability of the Intact and Replaced Knee" In: (ed) . Oxford: Goodfellow Publishers http://dx.doi.org/10.23912/978-1-910158-45-6-4344
References
Pinskerova V, Maquet P, Freeman MA. Writings on the knee between 1836 and 1917. J Bone Joint Surg Br 2000; 82(8): 1100-2.
https://doi.org/10.1302/0301-620X.82B8.0821100
Freeman MA, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech 2005; 38(2): 197-208.
https://doi.org/10.1016/j.jbiomech.2004.02.006
Blankevoort L, Huiskes R, de Lange A. The envelope of passive knee joint motion. J Biomech 1988; 21(9): 705-20.
https://doi.org/10.1016/0021-9290(88)90280-1
Feikes JD. The mobility and stability of the human knee joint [DPhil]. Oxford: University of Oxford; 1999.
Wilson DR. Three-dimensional kinematics of the knee [DPhil]. Oxford University of Oxford; 1995.
Wilson DR, Feikes JD, Zavatsky AB, O'Connor JJ. The components of passive knee movement are coupled to flexion angle. J Biomech 2000; 33(4): 465-73.
https://doi.org/10.1016/S0021-9290(99)00206-7
Yoshioka Y, Siu DW, Scudamore RA, Cooke TD. Tibial anatomy and functional axes. J Orthop Res 1989; 7(1): 132-7.
https://doi.org/10.1002/jor.1100070118
O'Connor JJ, Zavatsky AB, Gill HS. Stability of the knee. In: Pedowitz RA, O'Connor JJ, Akeson WH, eds. Daniel's Knee Injuries: Ligament and Cartilage, Structure, Function, Injury and Repair. Philadelphia: Lippincott Williams & Wilkins; 2003.
Biden E, O'Connor JJ. Experimental methods used to evaluate knee ligament function. In: Daniel D, Akeson WH, O'Connor J, eds. Knee ligaments: Structure, Function, Injury and Repair. New York: Raven Press; 1990.
Zavatsky AB. A kinematic-freedom analysis of a flexed-knee-stance testing rig. J Biomech 1997; 30(3): 277-80.
https://doi.org/10.1016/S0021-9290(96)00142-X
Monk AP, Choji K, O'Connor JJ, Goodfellow JW, Murray DW. The shape of the distal femur: a geometrical study using MRI. Bone Joint J 2014; 96-B(12): 1623-30.
https://doi.org/10.1302/0301-620X.96B12.33964
Veldpaus FE, Woltring HJ, Dortmans LJ. A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. J Biomech 1988; 21(1): 45-54.
https://doi.org/10.1016/0021-9290(88)90190-X
Goodfellow J, O'Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br 1978; 60-B(3): 358-69.
https://doi.org/10.1302/0301-620X.60B3.581081
O'Connor JJ, Shercliff TL, Biden E, Goodfellow JW. The geometry of the knee in the sagittal plane. Proc Inst Mech Eng H 1989; 203(4): 223-33.
https://doi.org/10.1243/PIME_PROC_1989_203_043_01
Kapandji I. The physiology of the joints. Edinburgh: Churchill Livingstone; 1970.
Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 2000; 82(8): 1189-95.
https://doi.org/10.1302/0301-620X.82B8.0821189
Friedrich NF, Muller W, O'Brien WR. Klinishe Anwendung biomechanischer und funktionell anatomisher Daten am Kniegelenk. [Clinical application of biomechanic and functional anatomical findings of the knee joint]. Orthopade (Springer Verlag) 1992; 21: 41-50.
Lu TW, O'Connor JJ. Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. J Anat 1996; 189 ( Pt 3): 575-85.
Zavatsky AB, O'Connor JJ. A model of human knee ligaments in the sagittal plane. Part 1: Response to passive flexion. Proc Inst Mech Eng H 1992; 206(3): 125-34.
https://doi.org/10.1243/PIME_PROC_1992_206_280_02
Mommersteeg TJ, Kooloos JG, Blankevoort L, Kauer JM, Huiskes R, Roeling FQ. The fibre bundle anatomy of human cruciate ligaments. J Anat 1995; 187 ( Pt 2): 461-71.
Wang C, Walker PS. The effects of flexion and rotation on the length patterns of the ligaments of the knee. J Biomech 1973; 6: 587-96.
https://doi.org/10.1016/0021-9290(73)90016-X
Sapega AA, Moyer RA, Schneck C, Komalahiranya N. Testing for isometry during reconstruction of the anterior cruciate ligament. Anatomical and biomechanical considerations. J Bone Joint Surg Am 1990; 72(2): 259-67.
https://doi.org/10.2106/00004623-199072020-00015
Sidles JA, Larson RV, Garbini JL, Downey DJ, Matsen FA 3rd. Ligament length relationships in the moving knee. J Orthop Res 1988; 6(4): 593-610.
https://doi.org/10.1002/jor.1100060418
Covey DC, Sapega AA, Sherman GM. Testing for isometry during reconstruction of the posterior cruciate ligament. Anatomic and biomechanical considerations. Am J Sports Med 1996; 24(6): 740-6.
https://doi.org/10.1177/036354659602400607
Brantigan OC, Voshell AF. The mechanics of the ligaments and menisci of the knee joint. J Bone Joint Surg [Am] 1941; 23(1): 44-66.
Wilson DR, Feikes JD, O'Connor JJ. Ligaments and articular contact guide passive knee flexion. J Biomech 1998; 31(12): 1127-36.
https://doi.org/10.1016/S0021-9290(98)00119-5
Feikes JD, O'Connor JJ, Zavatsky AB. A constraint-based approach to modelling the mobility of the human knee joint. J Biomech 2003; 36(1): 125-9.
https://doi.org/10.1016/S0021-9290(02)00276-2
Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A, Freeman MA. The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 2004; 86(3): 450-6.
https://doi.org/10.1302/0301-620X.86B3.14330
Gill HS, O'Connor JJ. Biarticulating two-dimensional computer model of the human patellofemoral joint. Clin Biomech (Bristol, Avon) 1996; 11(2): 81-9.
https://doi.org/10.1016/0268-0033(95)00021-6
Miller RK, Goodfellow JW, Murray DW, O'Connor JJ. In vitro measurement of patellofemoral force after three types of knee replacement. J Bone Joint Surg Br 1998; 80(5): 900-6.
https://doi.org/10.1302/0301-620X.80B5.0800900
Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br 1976; 58(3): 287-90.
https://doi.org/10.1302/0301-620X.58B3.956243
Buff HU, Jones LC, Hungerford DS. Experimental determination of forces transmitted through the patello-femoral joint. J Biomech 1988; 21(1): 17-23.
https://doi.org/10.1016/0021-9290(88)90187-X
O'Connor JJ. Can muscle co-contraction protect knee ligaments after injury or repair? J Bone Joint Surg Br 1993; 75(1): 41-8.
https://doi.org/10.1302/0301-620X.75B1.8421032
Lu TW, O'Connor JJ. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model. Proc Inst Mech Eng H 1996; 210(2): 71-9.
https://doi.org/10.1243/PIME_PROC_1996_210_395_02
Zavatsky AB, O'Connor JJ. Three-dimensional geometrical models of human knee ligaments. Proc Instn Mech Engrs, Part H 1994; 208: 229-240.
https://doi.org/10.1243/PIME_PROC_1994_208_293_02
Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 1975; (106): 216-31.
https://doi.org/10.1097/00003086-197501000-00033
van Dijk R, Huiskes R, Selvik G. Roentgen stereophotogrammetric methods for the evaluation of the three dimensional kinematic behaviour and cruciate ligament length patterns of the human knee joint. J Biomech 1979; 12(9): 727-31.
https://doi.org/10.1016/0021-9290(79)90021-6
Herzog W, Read LJ. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat 1993; 182 ( Pt 2): 213-30.
Goodfellow JW, O'Connor J. Clinical results of the Oxford knee: surface arthroplasty of the tibiofemoral joint with a meniscal bearing prosthesis. Clin Orthop Relat Res 1986; 205:21-42.
https://doi.org/10.1097/00003086-198604000-00005
Pegg EC, Bare J, Gill HS, Pandit H, O'Connor JJ, Murray DW, Price AJ. Influence of consciousness, muscle action, and exercise on medial condyle translation after unicompartmental knee arthroplasty. Knee 2015; 22(6): 646-652 .
https://doi.org/10.1016/j.knee.2015.09.017
Bradley J, Goodfellow JW, O'Connor JJ. A radiographic study of bearing movement in unicompartmental Oxford knee replacements. J Bone Joint Surg Br 1987; 69(4): 598-601.
https://doi.org/10.1302/0301-620X.69B4.3611164
Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 1980; 62(2): 259-70.
https://doi.org/10.2106/00004623-198062020-00013
Grood ES, Noyes FR, Butler DL, Suntay WJ. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg Am 1981; 63(8): 1257-69.
https://doi.org/10.2106/00004623-198163080-00007
Piziali RL, Seering WP, Nagel DA, Schurman DJ. The function of the primary ligaments of the knee in anterior-posterior and medial-lateral motions. J Biomech 1980; 13(9): 777-84.
https://doi.org/10.1016/0021-9290(80)90239-0
Seering WP, Piziali RL, Nagel DA, Schurman DJ. The function of the primary ligaments of the knee in varus-valgus and axial rotation. J Biomech 1980; 13(9): 785-94.
https://doi.org/10.1016/0021-9290(80)90240-7
Zavatsky AB, O'Connor JJ. A model of human knee ligaments in the sagittal plane. Part 2: Fibre recruitment under load. Proc Inst Mech Eng H 1992; 206(3): 135-45.
https://doi.org/10.1243/PIME_PROC_1992_206_281_02
Huss RA, Holstein H, O'Connor JJ. The effect of cartilage deformation on the laxity of the knee joint. Proc Inst Mech Eng H 1999; 213(1): 19-32.
https://doi.org/10.1243/0954411991534771
Grood ES, Noyes FR. Diagnosis of knee injuries: Biomechanical precepts. In: Feagin JA, ed. The Crucial Ligaments: Diagnosis and treatment of ligamentous injuries about the knee. New York: Churchill Livingstone; 1988.
Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 2000; 82(8): 1196-8.
https://doi.org/10.1302/0301-620X.82B8.0821196
Zavatsky AB, O'Connor JJ. Anteroposterior tibial translation during simulated isometric quadriceps contractions. Knee 1995; 2(2): 85-91.
https://doi.org/10.1016/0968-0160(95)00015-H
Jurist KA, Otis JC. Anteroposterior tibiofemoral displacements during isometric extension efforts. The roles of external load and knee flexion angle. Am J Sports Med 1985; 13(4): 254-8.
https://doi.org/10.1177/036354658501300407
Howell SM. Anterior tibial translation during a maximum quadriceps contraction: is it clinically significant? Am J Sports Med 1990; 18(6): 573-8.
https://doi.org/10.1177/036354659001800603
Zavatsky AB, O'Connor JJ. Ligament forces at the knee during isometric quadriceps contractions. Proc Inst Mech Eng H 1993; 207(1): 7-18.
https://doi.org/10.1243/PIME_PROC_1993_207_263_02
Huss RA, Holstein H, O'Connor JJ. A mathematical model of forces in the knee under isometric quadriceps contractions. Clin Biomech (Bristol, Avon) 2000; 15(2): 112-22.
https://doi.org/10.1016/S0268-0033(99)00059-5
Collins JJ, O'Connor JJ. Muscle-ligament interactions at the knee during walking. Proc Inst Mech Eng H 1991; 205(1): 11-8.
https://doi.org/10.1243/PIME_PROC_1991_205_256_02
O'Connor JJ, Biden E, Bradley J, Fitzpatrick D, Young S, Kershaw C, Danial DM, Goodfellow JW. The muscle stabilised knee. In: Daniel D, Akeson WH, O'Connor JJ, eds. Knee Ligaments: Structure, Function, Injury and Repair. New York: Raven Press; 1990.
Toutoungi DE, Lu TW, Leardini A, Catani F, O'Connor JJ. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech (Bristol, Avon) 2000; 15(3): 176-87.
https://doi.org/10.1016/S0268-0033(99)00063-7
Walker PS, Rovick JS, Robertson DD. The effects of knee brace hinge design and placement on joint mechanics. J Biomech 1988; 21(11): 965-74.
https://doi.org/10.1016/0021-9290(88)90135-2
Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech 1985; 18(7): 487-99.
https://doi.org/10.1016/0021-9290(85)90663-3
Price AJ, Rees JL, Beard DJ, Gill RH, Dodd CA, Murray DM. Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis. J Arthroplasty 2004; 19(5): 590-7.
https://doi.org/10.1016/j.arth.2003.12.082
Jefferson RJ, Whittle MW. Biomechanical assessment of unicompartmental knee arthroplasty, total condylar arthroplasty and tibial osteotomy. Clin Biomech (Bristol, Avon) 1989; 4(4): 232-42.
https://doi.org/10.1016/0268-0033(89)90008-9
Wiik AV, Aqil A, Tankard S, Amis AA, Cobb JP. Downhill walking gait pattern discriminates between types of knee arthroplasty: improved physiological knee functionality in UKA versus TKA. Knee Surg Sports Traumatol Arthrosc 2015; 23(6): 1748-55.
https://doi.org/10.1007/s00167-014-3240-x
Parratte S, Pauly V, Aubaniac JM, Argenson JN. No long-term difference between fixed and mobile medial unicompartmental arthroplasty. Clin Orthop Relat Res 2012; 470(1): 61-8.
https://doi.org/10.1007/s11999-011-1961-4